Metal-oxide nanostructures

A. Lamberti

Materials and Processes for Micro & Nano Technologies Group

14/11/2019
Titanium oxide nanotube arrays prepared by anodic oxidation

Dawei Gong, Craig A. Grimes, and Oommen K. Varghese
Department of Electrical Engineering and Materials Research Institute, 208 Laboratory, The Pennsylvania State University, University Park, Pennsylvania

Wenchong Hu, R.S. Singh, and Zhi Chen
Departments of Material Science and Engineering, and Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802

Elizabeth C. Dickey
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Stage I) compact oxide layer formed on the metal surface

Stage II) Cracks on the surface due to field-enhanced dissolution of the oxide layer \rightarrow diffusion of the electrolyte into cracks

Stage III) Current reaches a stable state \rightarrow equilibrium pores formation/dissolution

Anodic oxidation of Titanium
TiO$_2$ nanotubes application

DSSC

Water splitting

SERS substrate

Li-Ions Batteries

Supercapacitors

Memristor
Conti et al. *Submitted to Nanotechnology* (2016)
Crystallographic phase can be selected after the growth!

Thermal crystallization...

TEM confirm the amorphous nature of the as grown TiO$_2$ NTs

- As-grown
- 450°C
- 650°C
Growth on different Ti substrates

Advanced Materials Technologies 1.2 (2016)
Decoration of TiO$_2$ nanotubes

Chemico/physical modification of TiO$_2$ nanotubes

Thermal treatment above 350°C → not compatible with flexible electronics
Low temperature crystallization \rightarrow water can catalyze the crystallization reaction

Too long time 72 h

Hydrothermal condition
Mechanism water-assisted crystallization

Crystallization

1. Hydration
2. Dehydration
3. Combining the third octahedron
4. Formation of anatase unit cell

Morphology evolution

- **Top view**
 - Limited dissolution-precipitation
 - As-anodized TiO\textsubscript{2} NTs
 - Soaking in H\textsubscript{2}O at RT
 - Soaking time 15 - 25 h
 - Stage 1: Double-walled NTs
 - Soaking time 25 - 72 h
 - Stage 2: Wire-in-tube architectures
 - Long-term soaking (> 72 h)
 - Stage 3: Mesoporous NWs

- **Cross section**
 - Inner shell of tube walls
 - Outer shell of tube walls
 - Water
 - Mesoporous anatase TiO\textsubscript{2}
...why not water-vapor?
Conclusions

❑ We demonstrated **for the first time** that amorphous TiO2 NTs can be crystallized into anatase phase after **exposure to water vapor** in ambient condition.

❑ Crystallographic conversion is complete after **only 30 minutes**

❑ Photocatalytic test reveals an improvement with respect to thermally treated samples

❑ Facile approach → **cost effective** integration in **flexible** and lightweight devices.
ZnO nanowire by anodic oxidation
ZnO by 2D templating

GO membrane → NCs/GO membrane → 1D Templated NCs

GO membrane
ZnO membrane

Additional images with SEM information:
- WD = 8 mm, Aperture Size = 20.00 μm, EHT = 5.00 kV, Mag = 50.00 K X
- WD = 4 mm, Aperture Size = 20.00 μm, EHT = 5.00 kV, Mag = 100.00 K X
MOx nanostructures for DSCs: spongelike ZnO

Deposition by RF magnetron sputtering
Thermal oxidation @ 380°C in air

MOx nanostructures for DSCs: spongelike ZnO

Near RT oxidation treatments

Optimization of the sensitization procedure through DoE

Investigation of the material in DSCs and LIBs

Figure 4. Coefficient plot for the CCF-DoE. x_1 is the dye loading time, x_2 is the dye solution concentration, and x_3 is the pH of dye solution.
Composite materials

Graphene/TiO$_2$ nanocomposite

TiO$_2$ NPs/NTs nanocomposite

Acknowledgements
Thank you for your kind attention