Smart And Neuromorfic Biointerfacing Systems
Contact person: Erokhin Victor
Publications

Neuromorphic systems and artificial intelligence

2023
  • M. Talanov, J. Vallverdu, A. Adamatzky, A. Toschev, A. Suleimanova, A. Leukhin, A. Posdeeva, Y. Mikhailova, A. Rodionova, A. Mikhailov, S. Shchanikov, S. Gerasimova, M.M. Dehshibi, A. Hramov, V. Kazantsev, T. Tsoy, E. Magid, I. Lavrov, V. Erokhin, and K. Warwick, „Neuropunk revolution. Hacking cognitive systems towards cyborgs 3.0", Int. J. Unconventional Computing, 18, 145-201 (2023).  
  • N. Prudnikov, S. Malakhov, V. Kulagin, A. Emelyanov, S. Chvalun, V. Demin, and V. Erokhin, „Multi-terminal nonwoven stochastic memristive devices based on plyamide-6 and polyaniline for neuromorphic computing", Biomimetics, 8, 189 (2023).  https://doi.org/10.3390/ biomimetics8020189   
  • N. V., Kulagin, V. A., Battistoni, S., Demin, V. A., Erokhin, V. V., & Emelyanov, A. V. (2023). Polyaniline‐Based Memristive Devices as Key Elements of Robust Reservoir Computing for Image Classification. Physica status solidi (a), 2200700, https://doi.org/10.1002/pssa.202200700  
  • Prudnikov, N. V., Kulagin, V. A., Battistoni, S., Demin, V. A., Erokhin, V. V., & Emelyanov, A. V. (2023). Polyaniline‐Based Memristive Devices as Key Elements of Robust Reservoir Computing for Image Classification. Physica status solidi (a), 2200700, https://doi.org/10.1002/pssa.202200700 
  • Anna N. Matsukatova, Nikita V. Prudnikov, Vsevolod A. Kulagin, Silvia Battistoni, ..., Simone Luigi Marasso, Sergey N. Chvalun, Vyacheslav A. Demin, Andrey V. Emelyanov, Victor Erokhin (2023) Combination of Organic-Based Reservoir Computing and Spiking Neuromorphic Systems for a Robust and Efficient Pattern Classification, Advanced Intelligent Systems , https://doi.org/10.1002/aisy.202200407
  • Masaev DN, Suleimanova AA, Prudnikov NV, Serenko MV, Emelyanov AV, Demin VA, Lavrov IA, Talanov MO and Erokhin VV (2023) Memristive circuit-based model of central pattern generator to reproduce spinal neuronal activity in walking pattern. Front. Neurosci. 17:1124950. doi: 10.3389/fnins.2023.1124950
  • Silvia Battistoni, Rocco Carcione, Emanuela Tamburri, Victor Erokhin, Maria Letizia Terranova, Salvatore Iannotta (2023) A Ti-Doped Chemical Vapor Deposition Diamond Device as Artificial Synapse for Neuromorphic Application, Advanced Materials Technologies https://doi.org/10.1002/admt.202201555
2022
  • N.V. Prudnikov, Y.N. Malakhova, A.V. Emelyanov, O.V. Borshchev, M.S. Skorotetcky, M.S. Polinskaya, S.M. Peregudova, V.M. Barteneva, V.A. Demin, L.A. Feigin, S.N. Chvalun, S.A. Ponomarenko, and V.V. Erokhin, „Pulse programming of resistive states of a benzothien0 (3,2-B)(1)-benzothiophene-based organic memristive device with high endurance", Physica Status Solidi Rapid Res. Lett., 16, 2100471 (2022). https://doi.org/10.1002/pssr.202100471 
  • R. Sajapin, D. Vurro, P. D'Angelo, G. Tarabella, S. Marasso, M. Cocuzza, M. Botti, M. Buttrini, A. Calderaro, T. Berzina, S. Iannotta (2022) Aerosol Jet Printed Organic Memristive Microdevices based on a Chitosan:PANI Composite Conductive Channel ACS Applied Electronic Materials, https://doi.org/10.1021/acsaelm.2c01047
  • Erokhin, V. (2022). Fundamentals of Organic Neuromorphic Systems. Springer. https://doi.org/10.1007/978-3-030-79492-7
  • Prudnikov, N. V., Malakhova, Y. N., Barteneva, V. M., Skorotetcky, M. S., Borshchev, O. V., Demin, V. A., & Erokhin, V. V. (2022). Study of memristive devices on the base of siloxane quatrothiophene dimer. AIP Conference Proceedings , 2390(1), 020061.  https://doi.org/10.1063/5.0069489
2021
  • Suleimanova, A. A., Talanov, M. O., Masaev, D. N., Prudnikov, N. V., Borshchev, O. V., Polinskaya, M. S., ... & Erokhin, V. V. (2021). Simulation of a Central Pattern Generator Using Memristive Devices. Nanobiotechnology Reports16(6), 755-760. https://doi.org/10.1134/S2635167621060240
  • Battistoni, S., Cocuzza, M., Marasso, S. L., Verna, A., & Erokhin, V. (2021). The Role of the Internal Capacitance in Organic Memristive Device for Neuromorphic and Sensing Applications. Advanced Electronic Materials, 2100494.https://doi.org/10.1002/aelm.202100494
  • Gerasimov, Y., Zykov, E., Prudnikov, N., Talanov, M., Toschev, A., & Erokhin, V. (2021). On the organic memristive device resistive switching efficacy. Chaos, Solitons & Fractals143, 110549. https://doi.org/10.1016/j.chaos.2020.110549 
Older
  • A. Mikhaylov, A. Pimashkin, Y. Pigareva, S. Gerasimova, E. Gryaznov, S. Shchanikov, A. Zuev, M. Talanov, I. Lavrov, V. Demin, V. Erokhin, S. Lobov, I. Mukhina, V. Kazantsev, H. Wu, and B. Spagnolo, “Neurohybrid Memristive CMOS-Integrated Systems for Biosensors and Neuroprosthetics”, Frontiers in Neuroscience14, 358 (2020). https://doi.org/10.3389/fnins.2020.00358
  • Battistoni, S. (2020). Organic memristive devices for neuromorphic applications. BioNanoScience, 1-5. https://doi.org/10.1007/s12668-020-00808-z 
  • V. Erokhin, “Memristive devices for neuromorphic applications: Comparative analysis”, BioNanocience10, 834-847 (2020). https://doi.org/10.1007/s12668-020-00795-1
  • D.A. Lapkin, A.N. Korovin, S.N. Malakhov, A.V. Emelyanov, V.A. Demin, and V. Erokhin, “Optical Monitoring of the Resistive States of a Polyaniline‐Based Memristive Device”, Advanced Electronic Materials6, 2000511 (2020). https://doi.org/10.1002/aelm.202000511 
  • N.V. Prudnikov, D.A. Lapkin, A.V. Emelyanov, A.A. Minnekhanov, Y.N. Malakhova, S.N Chvalun, V.A. Demin, and V. Erokhin, “Associative STDP-like learning of neuromorphic circuits based on polyaniline memristive microdevices”, Journal of Physics D: Applied Physics53, 414001 (2020). https://doi.org/10.1088/1361-6463/ab9262
  • S. BattistoniR. SajapinV. Erokhin, A. Verna, M. CocuzzaS.L. Marasso, and S. Iannotta, “Effects of noise sourcing on organic memristive devices”, Chaos, Solitons & Fractals141, 110319 (2020). https://doi.org/10.1016/j.chaos.2020.110319
  • S. Battistoni, A. Verna, S.L. Marasso, M. Cocuzza, and V. Erokhin, "On the Interpretation of Hysteresis Loop for Electronic and Ionic Currents in Organic Memristive Devices", physica status solidi (a), 1900985 (2020). https://doi.org/10.1002/pssa.201900985
  • A. Cifarelli, T. Berzina, A. Parisini, and S. Iannotta, "Memristive response and electrochemical processes in polyaniline based organic devices", Organic Electronics, 83, 105757 (2020). https://doi.org/10.1016/j.orgel.2020.105757
  • A.A. Minnekhanov, A.V. Emelyanov, D.A. Lapkin, K.E. Nikiruy, B.S. Shvetsov, A.A. Nesmelov, V.V. Rylkov, V.A. Demin, and V.V.Erokhin, "Parylene based memristive devices with multilevel resistive switching for neuromorphic applications", Scientific Reports, 9, 10800 (2019).  https://doi.org/10.1038/s41598-019-47263-9
  • S. Battistoni, C. Peruzzi, A. Verna, S.L. Marasso, M. Cocuzza, V. Erokhin, and S. Iannotta, "Synaptic response in organic electrochemical transistor gated by a graphene electrode", Flexible and Printed Electronics, 4(4), 044002 (2019). https://doi.org/10.1088/2058-8585/ab4dce
  • S. Battistoni, V. Erokhin, and S. Iannotta, "Frequency driven organic memristive devices for neuromorphic short and long term plasticity", Organic Electronics, 65, 434-438 (2019). https://doi.org/10.1016/j.orgel.2018.11.033
  • E. Juzekaeva, A. Nasretdinov, S. Battistoni, T. Berzina, S. Iannotta, R. Khazipov, V. Erokhin, and M. Mukhtarov, "Coupling cortical neurons through electronic memristive synapse", Advanced Materials Technologies, 4, 1800350 (2019). https://doi.org/10.1002/admt.201800350
  • S. Battistoni, V. Erokhin, and S. Iannotta, "Organic memristive devices for perceptron applications", Journal of Physics D: Applied Physics, 51, 284002 (2018). https://doi.org/10.1088/1361-6463/aac98f
  • D.A. Lapkin, A.V. Emelyanov, V.A. Demin, V.V. Erokhin, L.A. Feigin, P.K. Kashkarov, and M.V. Kovalchuk, "Polyaniline-based memristive microdevice with high switching rate and endurance", Applied Physics Letters, 112, 043302 (2018). https://doi.org/10.1063/1.5013929
  • A. Cifarelli, A. Parisini, T. Berzina, and S. Iannotta, "Organic memristive element with Chitosan as solid polyelectrolyte", Microelectronic Engineering, 193, 65-70 (2018). https://doi.org/10.1016/j.mee.2018.02.024
  • A. Cifarelli, A. Parisini, S. Iannotta, and T. Berzina, "Organic memristive devices based on pectin as a solid polyelectrolyte", Microelectronic Engineering, 185-186, 55-60 (2018). https://doi.org/10.1016/j.mee.2017.11.001
  • D.A. Lapkin, A.V. Emelyanov, V.A. Demin, T. Berzina, and V.V. Erokhin, "Spike-timing-dependent plasticity of polyaniline-based memristive element", Microelectronic Engineering, 185-186, 43-47 (2018). https://doi.org/10.1016/j.mee.2017.10.017
  • T. Berzina, A. Dimontea, A. Adamatzky, V. Erokhin, and S. Iannotta, "Biolithography: Slime mould patterning of polyaniline", Applied Surface Science, 435, 1344-1350 (2018). https://doi.org/10.1016/j.apsusc.2017.11.162
  • S. Battistoni, V. Erokhin, and S. Iannotta, "Emulation with organic memristive devices of impairment of LTP mechanism in neurodegenerative disease pathology", Neural Plasticity, 2017, 6090312 (2017). https://doi.org/10.1155/2017/6090312
  • A.V. Emelyanov, D.A. Lapkin, V.A. Demin, V.V. Erokhin, S. Battistoni, G. Baldi, A. Dimonte, A.N. Korovin, S. Iannotta, P.K. Kashkarov, and M.V. Kovalchuk, "First step towards the realization of a double layer perceptron based on organic memristive devices", AIP Advances, 6, 111301 (2016). https://doi.org/10.1063/1.4966257
  • S. Battistoni, A. Dimonte, and V. Erokhin, "Spectrophotometric characterization of organic memristive devices", Organic Electronics, 38, 79-83 (2016). https://doi.org/10.1016/j.orgel.2016.08.004
  • A. Cifarelli, T. Berzina, A. Parisini, V. Erokhin, and S. Iannotta, "Polysaccarides-based gels and solid-state electronic devices with memresistive properties: Synergy between polyaniline electrochemistry and biology", AIP Advances​​​​​​, 6, 111302 (2016). https://doi.org/10.1063/1.4966559

 

Bioelectronics and Bioinformatics systems

2023
  1. Carcione, R., Pescosolido, F., Montaina, L., Toschi, F., Orlanducci, S., Tamburri, E., & Battistoni, S. (2023). Self-Standing 3D-Printed PEGDA–PANIs Electroconductive Hydrogel Composites for pH Monitoring. Gels, 9(10), 784, https://doi.org/10.3390/gels9100784 .
  2. V. Preziosi, M. Barra, V.R. Villella, E. Speranza, P. D’Angelo, S.L. Marasso, M. Cocuzza, A. Cassinese, S. Guido, Immuno-sensing at ultra-low concentration of TG2 protein by organic electrochemical transistors", Biosensors, 2023, 13, 448, doi:10.3390/bios13040448
  3. Carcione, R., Battistoni, S., Palmieri, E., Orlanducci, S., & Tamburri, E. (2023). Pretreatment strategies of titanium substrates to modulate the electrochemical properties of CVD-grown Ti-doped diamond electrodes for dopamine detection. Surface and Coatings Technology, 129662, https://doi.org/10.1016/j.surfcoat.2023.129662 .
  4. M. Parmeggiani, A. Ballesio, S. Battistoni, R. Carcione, M. Cocuzza, P. D'Angelo, V. Erokhin, S.L. Marasso, G. Rinaldi, G. Tarabella, D. Vurro, C.F. Pirri, Organic bioelectronics development in Italy: a review", Micromachines, 2023, 14, 60, doi:10.3390/mi14020460
  5. Luca Montaina, Rocco Carcione, Francesca Pescosolido, Manuela Montalto, Silvia Battistoni, and Emanuela Tamburri, Three-Dimensional-Printed Polyethylene Glycol Diacrylate-Polyaniline Composites by In Situ Aniline Photopolymerization: An Innovative Biomaterial for Electrocardiogram Monitoring Systems, ACS Appl. Electron. Mater https://doi.org/10.1021/acsaelm.2c01181
2022
  • M. Segantini, A. Ballesio, G. Palmara, P. Zaccagnini, F. Frascella, G. Garzone, S. L. Marasso, M. Cocuzza, M. Parmeggiani (2022). Investigation and modeling of the electrical bias stress in Electrolyte-Gated Organic Transistors,Adv. Electron. Mater., 2101332, doi:10.1002/aelm.202101332 
  • Segantini, M., Parmeggiani, M., Ballesio, A., Palmara, G., Frascella, F., Marasso, S. L., & Cocuzza, M. (2022). Design of a Portable Microfluidic Platform for EGOT-Based in Liquid Biosensing. Sensors22(3), 969. https://doi.org/10.3390/s22030969
  • Preziosi, V., Barra, M., Tomaiuolo, G., D’Angelo, P., Marasso, S. L., Verna, A., ... & Guido, S. (2022). Organic electrochemical transistors as novel biosensing platforms to study the electrical response of whole blood and plasma. Journal of Materials Chemistry B10(1), 87-95. https://doi.org/10.1039/D1TB01584B
2021
  • D’Angelo, P., Barra, M., Lombari, P., Coppola, A., Vurro, D., Tarabella, G., ... & Ingrosso, D. (2021). Homocysteine Solution-Induced Response in Aerosol Jet Printed OECTs by Means of Gold and Platinum Gate Electrodes. International journal of molecular sciences22(21), 11507. https://doi.org/10.3390/ijms222111507
  • Foresti, R., Ghezzi, B., Vettori, M., Bergonzi, L., Attolino, S., Rossi, S., Tarabella, G., Vurro, D., von Zeppelin, D., Iannotta, S. and Zappettini, A. (2021). 3D printed masks for powders and viruses safety protection using food grade polymers: Empirical tests. Polymers13(4), 617. https://doi.org/10.3390/polym13040617
  • Politi, S., Battistoni, S., Carcione, R., Montaina, L., Macis, S., Lupi, S., & Tamburri, E. (2021). PANI‐Modified Ti‐Doped CVD Diamond As Promising Conductive Platform to Mimic Bioelectricity Functions. Advanced Materials Interfaces8(24), 2101401.https://doi.org/10.1002/admi.202101401 
  • Peruzzi, C., Battistoni, S., Montesarchio, D., Cocuzza, M., Marasso, S. L., Verna, A., ... & Iannotta, S. (2021). Interfacing aptamers, nanoparticles and graphene in a hierarchical structure for highly selective detection of biomolecules in OECT devices. Scientific reports11(1), 1-11.https://doi.org/10.1038/s41598-021-88546-4
Older
  • Bertana, V., Scordo, G., Parmeggiani, M., Scaltrito, L., Ferrero, S., Gomez, M. G., ... & Marasso, S. L. (2020). Rapid prototyping of 3D Organic Electrochemical Transistors by composite photocurable resin. Scientific Reports10(1), 1-11. https://doi.org/10.1038/s41598-020-70365-8
  • G.Tarabella, D.Vurro, S. Lai, P. D’Angelo, L. Ascari, and S. Iannotta, "Aerosol jet printing of PEDOT:PSS for large area flexible electronics", Flexible and Printed Electronics, 5, 014005 (2020). https://doi.org/10.1088/2058-8585/ab61c4
  • P. D'Angelo, S.L. Marasso, A. Verna, A. Ballesio, M. Parmeggiani, A. Sanginario, G. Tarabella, D. Demarchi, C.F. Pirri, M. Cocuzza, and S. Iannotta, "Scaling Organic Electrochemical Transistors Down to Nanosized Channels", Small15(41), 1902332 (2019). https://doi.org/10.1002/smll.201902332 
  • P. D'Angelo, G. Tarabella, A. Romeo, S.L. Marasso, A. Verna, M. Cocuzza, C. Peruzzi, D. Vurro, and S. Iannotta, "PEDOT:PSS morpho-structure and ion-to-electron transduction/amplification mechanisms in Organic Electrochemical Transistors", Materials12(1),9 (2019). https://doi.org/10.3390/ma12010009
  • G. TarabellaS.L. Marasso, V. Bertana, D. Vurro, P. D’Angelo, S. Iannotta, and M. Cocuzza, "Multifunctional Operation of an Organic Device with Three-Dimensional Architecture", Materials, 12(8), 1357 (2019). https://doi.org/10.3390/ma12081357
  • D’Angelo, P., Tarabella, G., Romeo, A., Marasso, S. L., Cocuzza, M., Peruzzi, C., ... & Iannotta, S. (2018, July). Nanomolar detection of the antitumor drug tamoxifen by flexible organic electrochemical devices. In AIP Conference Proceedings (Vol. 1990, No. 1, p. 020015). AIP Publishing LLC. https://doi.org/10.1063/1.5047769
  • D. Gentili, P. D’Angelo, F. Militano, R. Mazzei, T. Poerio, M. Brucale, G. Tarabella, S. Bonetti, S.L. Marasso, M. Cocuzza, L. Giorno, S. Iannotta and M. Cavallini, "Integration of Organic Electrochemical Transistors and Immuno-Affinity Membranes for Label-Free Detection of Interleukin-6 at the Physiological Concentration Range through Antibody-Antigen Recognition", Journal of Materials Chemistry B6(33), 5400-5406 (2018). https://doi.org/10.1039/C8TB01697F
  • D'Angelo, P., Tarabella, G., Romeo, A., Giodice, A., Marasso, S., Cocuzza, M., ... & Iannotta, S. (2017). Monitoring the adaptive cell response to hyperosmotic stress by organic devices. MRS Communications7(2), 229-235. https://doi.org/10.1557/mrc.2017.29
  • V. Preziosi, M. Barra, A. Perazzo, G. Tarabella, A. Romeo, S.L. Marasso, P. D'Angelo,  S. Iannotta, A. Cassinese, and S.Guido; "Monitoring emulsion microstructure by using organic electrochemical transistors", Journal of Materials Chemistry C5, 2056-2065 (2017). https://doi.org/10.1039/C6TC05149A
  • Italian patent (22/3/2017): n. IT 102017000031234 (Assignee: CNR) "Transistor tridimensionale del tipo Organic ElectroChemical Transistor (OECT) e relativo metodo di fabbricazione " (“3D Organic Electrochemical Transistor and related fabrication method”).

 

Biomedicine: smart containers, personalized medical treatment

2021
  • S. Erokhina, L. Pastorino, D. Di Lisa, A.G. Kiiamov, D.A. Tayurskii, S. IannottaV. Erokhin and  A.R. Faizullina "3D structure reconstruction of nanoengineered polymeric capsules using Coherent X-Ray diffraction imaging." MethodsX: 101230 (2021). https://doi.org/10.1016/j.mex.2021.101230
2020
  • S. Erokhina, V. Ricci, S. Iannotta, and V. Erokhin, "Modification of the porous glass filter with LbL technique for variable filtration applications". Colloids and Surfaces A: Physicochemical and Engineering Aspects606, 125459 (2020). https://doi.org/10.1016/j.colsurfa.2020.125459
Older
  • L.A. Maiorova, S.I. Erokhina, M. Pisani, G. Barucca, M. Marcaccio, O.I. Koifman, D.S.Salnikov, O.A. Gromova, P. Astolfi, V. Ricci, and V. Erokhin, "Encapsulation of vitamin B12 into nanoengineered capsules and soft matter nanosystems for targeted delivery", Colloids and Surfaces B: Biointerfaces182, 110366 (2019). https://doi.org/10.1016/j.colsurfb.2019.110366
  • S. Erokhina, L. Pastorino, D. Di Lisa, A.G. Kiiamov, A.R. Faizullina, D.A. Tayurskii, S. Iannotta, and V. Erokhin, "Coherent X-ray diffraction imaging of nanoengineered polymeric capsules", JETP Letters, 106, 540-543 (2017). https://doi.org/10.1134/S0021364017200036